A Theorem on Orthology Centers

Eric Danneels and Nikolaos Dergiades

Abstract

We prove that if two triangles are orthologic, their orthology centers have the same barycentric coordinates with respect to the two triangles. For a point P with cevian triangle $A^{\prime} B^{\prime} C^{\prime}$, we also study the orthology centers of the triangle of circumcenters of $P B^{\prime} C^{\prime}, P C^{\prime} A^{\prime}$, and $P A^{\prime} B^{\prime}$.

1. The barycentric coordinates of orthology centers

Let $A^{\prime} B^{\prime} C^{\prime}$ be the cevian triangle of P with respect to a given triangle $A B C$. Denote by O_{a}, O_{b}, O_{c} the circumcenters of triangles $P B^{\prime} C^{\prime}, P C^{\prime} A^{\prime}, P A^{\prime} B^{\prime}$ respectively. Since $O_{b} O_{c}, O_{c} O_{a}$, and $O_{a} O_{b}$ are perpendicular to $A P, B P, C P$, the triangles $O_{a} O_{b} O_{c}$ and $A B C$ are orthologic at P. It follows that the perpendiculars from O_{a}, O_{b}, O_{c} to the sidelines $B C, C A, A B$ are concurrent at a point Q. See Figure 1. We noted that the barycentric coordinates of Q with respect to triangle $O_{a} O_{b} O_{c}$ are the same as those of P with respect to triangle $A B C$. Alexey A. Zaslasky [7] pointed out that our original proof [3] generalizes to an arbitrary pair of orthologic triangles.

Figure 1
Theorem 1. If triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are orthologic with centers P, P^{\prime} then the barycentric coordinates of P with respect to $A B C$ are equal to the barycentric coordinates of P^{\prime} with respect to $A^{\prime} B^{\prime} C^{\prime}$.

Publication Date: September 15, 2004. Communicating Editor: Paul Yiu.

Figure 2

Proof. Since $A^{\prime} P^{\prime}, B^{\prime} P^{\prime}, C^{\prime} P^{\prime}$ are perpendicular to $B C, C A, A B$ respectively, we have

$$
\sin B^{\prime} P^{\prime} C^{\prime}=\sin A, \quad \sin P^{\prime} B^{\prime} C^{\prime}=\sin P A C, \quad \sin P^{\prime} C^{\prime} B^{\prime}=\sin P A B .
$$

Applying the law of sines to various triangles, we have

$$
\begin{aligned}
\frac{b}{P^{\prime} B^{\prime}}: \frac{c}{P^{\prime} C^{\prime}} & =\frac{1}{c \sin P^{\prime} C^{\prime} B^{\prime}}: \frac{1}{b \sin P^{\prime} B^{\prime} C^{\prime}} \\
& =\frac{1}{c \sin P A B}: \frac{1}{b \sin P A C} \\
& =\frac{1}{A P \cdot c \sin P A B}: \frac{1}{A P \cdot b \sin P A C} \\
& =\frac{1}{\operatorname{area}(P A B)}: \frac{1}{\operatorname{area}(P A C)} \\
& =\operatorname{area}(P C A): \operatorname{area}(P A B) .
\end{aligned}
$$

Similarly, $\frac{a}{P^{\prime} A^{\prime}}: \frac{b}{P^{\prime} B^{\prime}}=\operatorname{area}(P B C)$: area $(P C A)$. It follows that the barycentric coordinates of P^{\prime} with respect to triangle $A^{\prime} B^{\prime} C^{\prime}$ are

$$
\begin{aligned}
& \operatorname{area}\left(P^{\prime} B^{\prime} C^{\prime}\right): \operatorname{area}\left(P^{\prime} C^{\prime} A^{\prime}\right): \operatorname{area}\left(P^{\prime} A^{\prime} B^{\prime}\right) \\
= & \left(P^{\prime} B^{\prime}\right)\left(P^{\prime} C^{\prime}\right) \sin A:\left(P^{\prime} C^{\prime}\right)\left(P^{\prime} A^{\prime}\right) \sin B:\left(P^{\prime} A^{\prime}\right)\left(P^{\prime} B^{\prime}\right) \sin C \\
= & \frac{a}{P^{\prime} A^{\prime}}: \frac{b}{P^{\prime} B^{\prime}}: \frac{c}{P^{\prime} C^{\prime}} \\
= & \operatorname{area}(P B C): \operatorname{area}(P C A): \operatorname{area}(P A B),
\end{aligned}
$$

the same as the barycentric coordinates of P with respect to triangle $A B C$.
This property means that if P is the centroid of $A B C$ then P is also the centroid of $A^{\prime} B^{\prime} C^{\prime}$.

2. The orthology center of $O_{a} O_{b} O_{c}$

We compute explicitly the coordinates (with respect to triangle $A B C$) of the orthology center Q of the triangle of circumcenters $O_{a} O_{b} O_{c}$. See Figure 3. Let $P=(x: y: z)$ and $Q=(u: v: w)$ in homogeneous barycentric coordinates. then $B C^{\prime}=\frac{c x}{x+y}, C B^{\prime}=\frac{b x}{x+z}$. In the notations of John H. Conway, the pedal A^{*} of O_{a} on $B C$ has homogeneous barycentric coordinates $\left(0: u S_{C}+a^{2} v: u S_{B}+a^{2} w\right)$. See, for example, [6, pp.32, 49].

Figure 3
Note that $B A^{*}=\frac{u S_{B}+a^{2} w}{(u+v+w) a}$ and $A^{*} C=\frac{u S_{C}+a^{2} v}{(u+v+w) a}$. Also, by Stewart's theorem,

$$
\begin{aligned}
& B B^{\prime 2}=\frac{c^{2} x^{2}+a^{2} z^{2}+\left(c^{2}+a^{2}-b^{2}\right) x z}{(x+z)^{2}}, \\
& C C^{\prime 2}=\frac{b^{2} x^{2}+a^{2} y^{2}+\left(a^{2}+b^{2}-c^{2}\right) x y}{(x+y)^{2}} .
\end{aligned}
$$

Hence, if ρ is the circumradius of $P B^{\prime} C^{\prime}$, then

$$
\begin{aligned}
& a\left(B A^{*}-A^{*} C\right) \\
= & \left(B A^{*}+A^{*} C\right)\left(B A^{*}-A^{*} C\right) \\
= & \left(B A^{*}\right)^{2}-\left(A^{*} C\right)^{2} \\
= & \left(O_{a} B\right)^{2}-\left(O_{a} A^{*}\right)^{2}-\left(O_{a} C\right)^{2}+\left(O_{a} A^{*}\right)^{2} \\
= & \left(O_{a} B\right)^{2}-\rho^{2}-\left(O_{a} C\right)^{2}+\rho^{2} \\
= & B P \cdot B B^{\prime}-C P \cdot C C^{\prime} \\
= & \frac{c^{2} x^{2}+a^{2} z^{2}+\left(c^{2}+a^{2}-b^{2}\right) x z}{(x+z)(x+y+z)}-\frac{b^{2} x^{2}+a^{2} y^{2}+\left(a^{2}+b^{2}-c^{2}\right) x y}{(x+y)(x+y+z)} \\
= & -\frac{a^{2}(y-z)(x+y)(x+z)+b^{2} x(x+y)(x+2 z)-c^{2} x(x+z)(x+2 y)}{(x+y)(x+z)(x+y+z)}
\end{aligned}
$$

since the powers of B and C with respect to the circle of $P B^{\prime} C^{\prime}$ are $B B^{\prime} \cdot B P=$ $\left(O_{a} B\right)^{2}-\rho^{2}$ and $C C^{\prime} \cdot C P=\left(O_{a} C\right)^{2}-\rho^{2}$ respectively. In other words,

$$
\begin{aligned}
& \frac{\left(c^{2}-b^{2}\right) u-a^{2}(v-w)}{u+v+w} \\
= & -\frac{a^{2}(y-z)(x+y)(x+z)+b^{2} x(x+y)(x+2 z)-c^{2} x(x+z)(x+2 y)}{(x+y)(x+z)(x+y+z)},
\end{aligned}
$$

or

$$
\begin{aligned}
& \left(a^{2}(y-z)(x+y)(x+z)-b^{2}(x+y)\left(x y+y z+z^{2}\right)+c^{2}(x+z)\left(y^{2}+x z+y z\right)\right) u \\
- & \left(a^{2}(x+y)(x+z)(x+2 z)-b^{2} x(x+y)(x+2 z)+c^{2} x(x+z)(x+2 y)\right) v \\
+ & \left(a^{2}(x+y)(x+z)(x+2 y)+b^{2} x(x+y)(x+2 z)-c^{2} x(x+z)(x+2 y)\right) w=0 .
\end{aligned}
$$

By replacing x, y, z by y, z, x and u, v, w by v, w, u, we obtain another linear relation in u, v, w. From these we have $u: v: w$ given by

$$
\begin{aligned}
u= & \left(x^{2}-z^{2}\right) y^{2} S_{B B}+\left(x^{2}-y^{2}\right) z^{2} S_{C C}-x(2 x+y)(x+z)(y+z) S_{A B} \\
& -x(2 x+z)(x+y)(y+z) S_{C A}-2(x+y)(x+z)(x y+y z+z x) S_{B C} .
\end{aligned}
$$

and v obtained from u by replacing $x, y, z, S_{A}, S_{B}, S_{C}$ by $v, w, u, S_{B}, S_{C}, S_{A}$ respectively, and w from v by the same replacements.

3. Examples

3.1. The centroid. For $P=G$,

$$
\begin{aligned}
O_{a}= & \left(5 S_{A}\left(S_{B}+S_{C}\right)+2\left(S_{B B}+5 S_{B C}+S_{C C}\right)\right. \\
& : 3 S_{A B}+4 S_{A C}+S_{B C}-2 S_{C C} \\
& \left.: 3 S_{A C}+4 S_{A B}+S_{B C}-2 S_{B B}\right) .
\end{aligned}
$$

Similarly, we write down the coordinates of O_{b} and O_{c}. The perpendiculars from O_{a} to $B C$, from O_{b} to $C A$, and from O_{c} to $A B$ have equations

$$
\begin{aligned}
& \left(S_{B}-S_{C}\right) x-\left(3 S_{B}+S_{C}\right) y+\left(S_{B}+3 S_{C}\right) z=0, \\
& \left(S_{C}+3 S_{A}\right) x+\left(S_{C}-S_{A}\right) y-\left(3 S_{C}+S_{A}\right) z=0, \\
& -\left(3 S_{A}+S_{B}\right) x+\left(S_{A}+3 S_{B}\right) y+\left(S_{A}-S_{B}\right) z=0 .
\end{aligned}
$$

These three lines intersect at the nine-point center

$$
X_{5}=\left(S_{C A}+S_{A B}+2 S_{B C}: S_{A B}+S_{B C}+2 S_{C A}: S_{B C}+S_{C A}+2 S_{A B}\right),
$$

which is the orthology center of $O_{a} O_{b} O_{c}$.
3.2. The orthocenter. If P is the orthocenter, the circumcenters O_{a}, O_{b}, O_{c} are simply the midpoints of the segments $A P, B P, C P$ respectively. In this case, $Q=H$.
3.3. The Steiner point. If P is the Steiner point $\left(\frac{1}{S_{B}-S_{C}}: \frac{1}{S_{C}-S_{A}}: \frac{1}{S_{A}-S_{B}}\right)$, the perpendiculars from the circumcenters to the sidelines are

$$
\begin{array}{ccccc}
\left(S_{B}-S_{C}\right) x & - & S_{C} y & + & S_{B} z \\
S_{C} x & + & \left(S_{C}-S_{A}\right) y & - & S_{A} z \\
-S_{B} x & + & S_{A} y & + & 0 \\
\left.-S_{A}-S_{B}\right) z & =0
\end{array}
$$

These lines intersect at the deLongchamps point

$$
X_{20}=\left(S_{C A}+S_{A B}-S_{B C}: S_{A B}+S_{B C}-S_{C A}: S_{B C}+S_{C A}-S_{A B}\right) .
$$

3.4. X_{671}. The point $P=X_{671}=\left(\frac{1}{S_{B}+S_{C}-2 S_{A}}: \frac{1}{S_{C}+S_{A}-2 S_{B}}: \frac{1}{S_{A}+S_{B}-2 S_{C}}\right)$ is the antipode of the Steiner point on the Steiner circum-ellipse. It is also on the Kiepert hyperbola, with Kiepert parameter $-\operatorname{arccot}\left(\frac{1}{3} \cot \omega\right)$, where ω is the Brocard angle. In this case, the circumcenters are on the altitudes. This means that $Q=H$.
3.5. An antipodal pair on the circumcircle. The point X_{925} is the second intersection of the circumcircle with the line joining the deLongchamps point X_{20} to X_{74}, the isogonal conjugate of the Euler infinity point. It has coordinates

$$
\left(\frac{1}{\left(S_{B}-S_{C}\right)\left(S^{2}-S_{A A}\right)}: \frac{1}{\left(S_{C}-S_{A}\right)\left(S^{2}-S_{B B}\right)}: \frac{1}{\left(S_{A}-S_{B}\right)\left(S^{2}-S_{C C}\right)}\right) .
$$

For $P=X_{925}$, the orthology Q of $O_{a} O_{b} O_{c}$ is the point $X_{68},{ }^{1}$ which lies on the same line joining X_{20} to X_{74}.

The antipode of X_{925} is the point

$$
X_{1300}=\left(\frac{1}{S_{A}\left(\left(S_{A A}-S_{B C}\right)\left(S_{B}+S_{C}\right)-S_{A}\left(S_{B}-S_{C}\right)^{2}\right)}: \cdots: \cdots\right)
$$

It is the second intersection of the circumcircle with the line joining the orthocenter to the Euler reflection point ${ }^{2} X_{110}=\left(\frac{S_{B}+S_{C}}{S_{B}-S_{C}}: \frac{S_{C}+S_{A}}{S_{C}-S_{A}}: \frac{S_{A}+S_{B}}{S_{A}-S_{B}}\right)$. For $P=$ X_{1300}, the orthology center Q of $O_{a} O_{b} O_{c}$ has first barycentric coordinate

$$
\frac{\left.S_{A A}\left(S_{B B}+S_{C C}\right)\left(S_{A}\left(S_{B}+S_{C}\right)-\left(S_{B B}+S_{C C}\right)\right)+S_{B C}\left(S_{B}-S_{C}\right)^{2}\left(S_{A A}-2 S_{A}\left(S_{B}+S_{C}\right)-S_{B C}\right)\right)}{S_{A}\left(\left(S_{B}+S_{C}\right)\left(S_{A A}-S_{B C}\right)-S_{A}\left(S_{B}-S_{C}\right)^{2}\right)}
$$

In this case, $O_{a} O_{b} O_{c}$ is also perspective to $A B C$ at

$$
X_{254}=\left(\frac{1}{S_{A}\left(\left(S_{A A}-S_{B C}\right)\left(S_{B}+S_{C}\right)-S_{A}\left(S_{B B}+S_{C C}\right)\right)}: \cdots: \cdots\right)
$$

By a theorem of Mitrea and Mitrea [5], this perspector lies on the line $P Q$.

[^0]3.6. More generally, for a generic point P on the circumcircle with coordinates $\left(\frac{S_{B}+S_{C}}{\left(S_{A}+t\right)\left(S_{B}-S_{C}\right)}: \cdots: \cdots\right)$, the center of orthology of $O_{a} O_{b} O_{c}$ is the point
$$
\left(\frac{\left(S_{B}+S_{C}\right)\left(F\left(S_{A}, S_{B}, S_{C}\right)+G\left(S_{A}, S_{B}, S_{C}\right) t\right)}{S_{A}+t}: \cdots: \cdots\right),
$$
where
\[

$$
\begin{aligned}
F\left(S_{A}, S_{B}, S_{C}\right)= & S_{A A}\left(S_{B B}+S_{C C}\right)\left(S_{A}+S_{B}+S_{C}\right)+S_{A A B C}\left(S_{B}+S_{C}\right) \\
& -S_{B B} S_{C C}\left(2 S_{A}+S_{B}+S_{C}\right) \\
G\left(S_{A}, S_{B}, S_{C}\right)= & 2\left(S_{A A}\left(S_{B B}+S_{B C}+S_{C C}\right)-S_{B B} S_{C C}\right)
\end{aligned}
$$
\]

Proposition 2. If P lies on the circumcircle, the line joining P to Q always passes through the deLongchamps point X_{20}.

Proof. The equation of the line $P Q$ is

$$
\begin{aligned}
& \sum_{\text {cyclic }}\left(S_{B}-S_{C}\right)\left(S_{A}+t\right)\left(S_{A}^{3}\left(S_{B}-S_{C}\right)^{2}\right. \\
& \quad+\left(S_{B}+S_{C}+2 t\right)\left(S_{A A}\left(S_{B B}-S_{B C}+S_{C C}\right)-S_{B B} S_{C C}\right) x=0 .
\end{aligned}
$$

3.7. Some further examples. We conclude with a few more examples of P with relative simple coordinates for Q, the orthology center of $O_{a} O_{b} O_{c}$.

P	first barycentric coordinate of Q
X_{7}	$4 a^{3}+a^{2}(b+c)-2 a(b-c)^{2}-3(b+c)(b-c)^{2}$
X_{8}	$4 a^{4}-5 a^{3}(b+c)-a^{2}\left(b^{2}-10 b c+c^{2}\right)+5 a(b-c)^{2}(b+c)-3\left(b^{2}-c^{2}\right)^{2}$
X_{69}	$3 a^{6}-4 a^{4}\left(b^{2}+c^{2}\right)+a^{2}\left(3 b^{4}+2 b^{2} c^{2}+3 c^{4}\right)-2\left(b^{2}-c^{2}\right)^{2}\left(b^{2}+c^{2}\right)$
X_{80}	$\frac{4 a^{3}-3 a^{2}(b+c)-2 a\left(2 b^{2}-5 b c+2 c^{2}\right)+3(b-c)^{2}(b+c)}{\left(b^{2}+c^{2}-a^{2}-b c\right)}$

In each of the cases $P=X_{7}$ and X_{80}, the triangle $O_{a} O_{b} O_{c}$ is also perspective to $A B C$ at the incenter.

References

[1] E. Danneels, Hyacinthos message 10068, July 12, 2004.
[2] N. Dergiades, Hyacinthos messages 10073, 10079, 10083, July 12, 13, 2004.
[3] N. Dergiades, Hyacinthos messages 10079, July 13, 2004.
[4] C. Kimberling, Encyclopedia of Triangle Centers, available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
[5] D. Mitrea and M. Mitrea, A generalization of a theorem of Euler, Amer. Math. Monthly, 101 (1994) 55-58.
[6] P. Yiu, Introduction to the Geometry of the Triangle, Florida Atlantic University lecture notes, 2001.
[7] A. A. Zaslavsky, Hyacinthos message 10082, July 13, 2004.

Eric Danneels: Hubert d'Ydewallestraat 26, 8730 Beernem, Belgium
E-mail address: eric.danneels@pandora.be
Nikolaos Dergiades: I. Zanna 27, Thessaloniki 54643, Greece
E-mail address: ndergiades@yahoo.gr

[^0]: ${ }^{1} X_{68}$ is the perspector of the reflections of the orthic triangle in the nine-point center.
 ${ }^{2}$ The Euler reflection point is the intersection of the reflections of the Euler lines in the sidelines of triangle $A B C$.

